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Abstract. The research reported in the paper focuses on the stock 

market prediction problem, the main aim being the development of a 

methodology to forecast the OMV Petrom stock closing price. The methodology 

is based on some novel variable selection methods and an analysis of neural 

network and support vector machines based prediction models. Also, a hybrid 

approach which combines the use of the variables derived from technical and 

fundamental analysis of stock market indicators in order to improve prediction 

results of the proposed approaches is reported in this paper. Two novel 

variable selection methods are used to optimize the performance of prediction 

models. In order to identify the most informative time series to predict a stock 

price, both methods are essentially based on the general forecasting error 

minimization when a certain stock price is expressed exclusively in terms of 

other indicators. After the variable selection is over, the forecasting is 

performed in terms of the historical values of the given stock price and selected 

variables respectively. The performance of the proposed methodology is 

evaluated by a long series of tests, the results being very encouraging as 

compared to similar developments.  

Keywords: Machine learning; Artificial neural network;Nonlinear 

autoregressive with exogenous input;Support vector regression; Financial data 

forecasting; Clustering. 
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1. Introduction 

Financial markets are complex, non-stationary, and volatile systems 

conditioned by chaotic nature of stock data [1]. Stock market forecasting is one 

of the most complicated issues of time series analysis. The development of an 

accurate prediction models plays an important role in the design of effective 

trading strategies.  
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Recently, machine learning techniques have been successfully 

introduced into the field of financial time series analysis in order to help 

investors make qualitative decision in stock market forecasting. Artificial neural 

networks (ANN) have become one of the most popular and useful machine 

learning techniques for time series prediction due to their ability to deal with 

noisy and unstable data. In the area of financial data predictions, White 

(1988)was among the first scholars who introduced an artificial neural network 

based model for economic data prediction [2]. Furthermore, in [3] the potential 

of neural networks in forecasting of stock market prices was examined, 

showing promising experimental results. A combined method based on 

backpropagation neural network (BPNN) for Japanese stock market prediction 

was proposed in [4]. In addition, a series of studies carrying out comparative 

analyses experimentally proved the advantages of ANN based forecasting 

models against traditional statistical models. However, neural networks have 

some limitations, including overfitting problem, selection of many controlling 

parameters, beside ANNs require more training data and time. [5,6] 

In the late 1990’s, a novel technique called Support Vector Machines 

(SVM) has been introduced to solve non-linear regression problem in time 

series analysis. Unlike neural networks, for achieving generalized performance, 

the noted techniques attempt to minimize the generalized error bound instead of 

minimizing the training error [7]. Because of its good generalization capability, 

the Support Vector Regression (SVR) has been extensively applied in time 

series analysis and showed promising results. A SVM-based approach for 

financial data forecasting was proposed in [8]. The experimental analysis 

proved that SVM outperforms the BPNN from the point of view of prediction 

evaluation criteria. Also, studies aiming the forecasting of the stock price 

indices and their movement directions using SVM experimentally established 

that SVMs generally perform better than other forecasting methods [9,10].  

In the past decade, long series of research had been carried out aiming 

to hybridize machine learning methods with feature selection techniques and 

econometric analysis tools in order to improve prediction accuracy have been 

reported. There is a tremendous amount of work done in the field of financial 

time series analysis that demonstrates the effectiveness of the use of combined 

artificial intelligence techniques for prediction task [11-14].  Nonetheless, there 

are still opportunities to improve the existing models and increase 

performances.  

This research focuses mainly on the stock market prediction problem. 

The main goal is to develop a methodology to forecast the OMV Petrom stock 

closing price. Our proposed methodology is based on some novel variable 
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selection methods and analysis of neural network and support vector machines 

based models for prediction of stock market prices. This paper presents a hybrid 

approach combining the use of the variables derived from technical and 

fundamental analysis of stock market indicators aiming to improve prediction 

results of the proposed approaches. Two novel variable selection methods are 

used to optimize the performance of prediction models. In order to identify the 

most informative time series to predict a stock price, both methods are 

essentially based on the general forecasting error minimization when a certain 

stock price, Y, is expressed exclusively in terms of other indicators (variables 

and/or stock prices). Also, the former proposed method includes cross-

correlation analysis whereas the second one is derived from the cluster analysis 

and cross-correlation coefficients. After the variable selection is over, the 

forecasting of Y is performed in terms of the historical values of Y and selected 

variables respectively. Also, we had to analyze the performances of the 

forecasting model using both stock data and sets of variables obtained from 

technical and fundamental analysis against the forecasting model that uses only 

the stock closing price historical values to predict the closing price at the next 

moment of time. The last model is obviously the simplest one and yet very 

useful in many real world applications. In many cases it proved better results 

that much sophisticated models [15]. In our case the former model proved better 

results.  

The rest of the paper is organized as follows. In Section 2 the 

methodology used in the research is discussed briefly. Data acquisition and 

preprocessing are presented in Section 3, while the general prediction model 

and two of the most intensively used machine learning-based techniques for 

data forecasting are exposed in the fourth section of the paper. In Section 5 the 

experimental results of the proposed methodology together with a comparative 

analysis are presented. Finally, the concluding remarks are given in Section 6. 

 

2. Proposed methodology 

This paper presents a three-stages architecture to develop a hybrid 

prediction model for stock exchange market.  

The first stage is data preprocessing. Data preprocessing consists of the 

following steps. The technical indicators based on historical data are computed 

in the first step. Then we apply a data normalization technique to normalize 

data into one scale. The aim of the final step of is to choose the key variables 

for the input data in the model. We develop two different variable selection 
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techniques based on the general forecasting error minimization when a certain 

stock price, Y, is expressed exclusively in terms of other indicators. The former 

technique includes also the cross-correlation method and the second one is 

based on a clustering process.  

In the next stage, we present the general prediction model and two 

powerful forecasting techniques to deal with it, namely Nonlinear 

Autoregressive with eXogenous input (NARX) neural networks and support 

vector machines. 

In the third stage, we evaluate the results achieved from the 

experiments based on different models and as well as comparing the obtained 

results.  

Also, the analysis of the performances of the forecasting model using 

both OMV stock data and sets of variables obtained from technical and 

fundamental analysis against the forecasting model that uses only the stock 

closing price historical values to predict the closing price at the next moment of 

time is presented in the final part of the paper. Each stage is detailed in the 

following sections. 

 

3. Data acquisition and preprocessing 

 

3.1 Research data 

The data used in this study is the historical stock prices taken from the 

Bucharest stock exchange (BVB).  The whole data set covers the period from 

March 9, 2008 to November 30, 2014, a total of 350 weekly observations. The 

stock data consists of weekly observations of stock opening, closing, lowest, 

highest prices, and traded volume of OMV Petrom shares (symbol OMV). In 

addition, technical and fundamental analyses were used to accurately choose 

indicators that influence stock price’s behavior. In this study 5 variables from 

fundamental analysis and 30 variables from technical analysis of the stock 

market were selected. OMV Petrom stock closing price was used as a 

forecasting variable.  

 

3.2 Fundamental and Technical analysis  

Fundamental analysis attempts to examine a variety of factors that 

could alter security’s value, including global and market based macroeconomic 

and industry specific factors. This research includes 5 indicators obtained from 

fundamental analysis of market data. In contrast to fundamental analysis which 

examines market related economic, financial and other qualitative and 

quantitative factors, technical analysis examines only statistics from past market 

data, such as price and volume to determine market trends. Technical analysis is 

a set of techniques for prediction the stock price movements by analyzing the 

past sequence of stock prices. The main goal of this technique is to identify 

regularities in the stock data by extracting nonlinear patterns from noisy data. In 

this research we used 30 technical indicators. The complete list of technical 
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indicators, as well as stock-based variables and fundamental analysis-based 

indicators are given in Table 1. 

In the following, we assume that Yt is the OMV stock closing value at 

the moment of time t. We consider 1 ≤ 𝑡 ≤ 𝑇.  For each t, we denote by XTt =

(XTt(1), XTt(2), … , XTt(𝑁))
𝑇

 the vector whose entries are the values of the 

following indicators: OMV stock opening, lowest, highest prices, and traded 

volume (stock-based indicators), 5 variables resulted from fundamental analysis 

and 30 variables obtained from technical analysis of the stock market. Note that 

XT = (XT(1), XT(2), … , XT(𝑁))
𝑇
 is a vector, each entry 𝑋𝑇(𝑖) being the 

time series corresponding to the ith variable. In our case 𝑁 = 39. 

 

3.3. Data normalization 

As the collected data samples have different scales with different 

values, it is necessary to normalize the time series prior to training step. The 

most commonly used approach for data normalization purposes is min-max 

method that normalizes the values of an attribute according to its minimum and 

maximum values. In our research, the data normalization range is chosen to be 

[0,1], and the equation for data normalization is given by, 

                           𝑉 =
𝑣−𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛
                                                              (1) 

where 𝑉 is the normalized data, 𝑣  is the original data, 𝑣𝑚𝑎𝑥𝑎𝑛𝑑𝑣𝑚𝑖𝑛 are 

maximum and minimum values of 𝑣. 

 

3.4. Variable selection  

Variable selection is the process of selecting input variables for the use 

in model construction in order to simplify training step. This method identifies 

a small subset of variables that provide the most important information about 

the given data. The selected variables minimize the generalization error and 

shorten training time.  

The most commonly used selection process is exclusively based on the 

cross-correlation values and is described as follows. Let 𝑇𝑟 be a given threshold 

value. The variable 𝑋𝑇(𝑖) is selected as an input variable if the cross-correlation 

coefficient between 𝑋𝑇(𝑖) and Y is bigger than  𝑇𝑟. 

 𝑟𝑋𝑇(𝑖),𝑌 =
∑ (𝑋𝑇𝑡(𝑖) − 𝑋𝑇(𝑖)̅̅ ̅̅ ̅̅ ̅)(𝑌𝑡 − �̅�)𝑇

𝑡=1

√∑ (𝑋𝑇𝑡(𝑖) − 𝑋𝑇(𝑖)̅̅ ̅̅ ̅̅ ̅)2𝑇
𝑡=1 ∑ (𝑌𝑡 − �̅�)2𝑇

𝑡=1

                                       (2) 

𝑟𝑋𝑇(𝑖),𝑌 > 𝑇𝑟 

Where: 

𝑋𝑇(𝑖)̅̅ ̅̅ ̅̅ ̅ =
1

𝑇
∑ 𝑋𝑇𝑡(𝑖)

𝑇

𝑡=1

, �̅� =
1

𝑇
∑ 𝑌𝑡

𝑇

𝑡=1

 

In order to improve the prediction accuracy, we proposed two novel 
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approaches in variable selection process.  

Selection method V1. The set 𝒮𝑓 of variables 𝑋(𝑖), 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≤ 𝑁, 

components of XT, are selected as inputs if each cross-correlation coefficient 

between 𝑋(𝑖) and Y is bigger than a threshold 𝑇𝑟, 𝑇𝑟𝑚𝑖𝑛 ≤ 𝑇𝑟 ≤ 𝑇𝑟𝑚𝑎𝑥 < 1, 

                       𝑟𝑋𝑇(𝑖),𝑌 > 𝑇𝑟                                                                                         (3) 

and the general forecasting error of the model 

Ŷt = 𝑔(𝑋𝑡(1), … , 𝑋𝑡(𝑛))                                                                          (4) 

is minimized with respect to Tr on a certain set of possible values 𝑇𝑟𝑆 ⊂
[𝑇𝑟𝑚𝑖𝑛, 𝑇𝑟𝑚𝑎𝑥].   

The general forecasting error is expressed in terms of root mean 

squared error (RMSE), defined by: 

                      𝑅𝑀𝑆𝐸(𝑇, 𝑃) = √
1

𝑛𝑟
∑(𝑇(𝑖) − 𝑃(𝑖))

2
𝑛𝑟

𝑖=1

                                        (5) 

where 𝑇 = (𝑇(1), 𝑇(2), … , 𝑇(𝑛𝑟)) is the vector of target values, 𝑃 =

(𝑃(1), 𝑃(2), … , 𝑃(𝑛𝑟)) is the vector of predicted values and 𝑛𝑟 is the number 

of data samples. 

The idea behind this selection process is to determine 𝒮𝑓, the most 

suitable subset of variables strongly enough correlated to Y, from the point of 

view of its closing price prediction capacity in terms of (4). In this case, the 

prediction capacity of (4) when 𝒮𝑓 is the subset of selected variables is a 

measure of the influence of each element belonging to 𝒮𝑓on the closing price Y.      

Note that the set 𝑇𝑟𝑆 can be established based on the computed cross-

correlation values (in our case those displayed in Table 1). 

  

Selection method V2. Another way to select a subset of key input variables 

is based on the following procedure.   

 Apply a clustering method (for instance k-means) to the variable set and 

select the cluster 𝒞 = {𝑋(1), … , 𝑋(𝑛(𝒞))}such that  the RMSE 

prediction error of the model (6) is minimized 

 Ŷt = 𝑔 (𝑋𝑡(1), … , 𝑋𝑡(𝑛(𝒞)))                                                           (6) 

 For further optimization, select a subset 𝒮𝒞 of 𝒞 having the following 

properties: 𝑥𝜖𝒮𝒞 if and only if the cross-correlation between  𝒞 ∖ {𝑥} 

and Y and cross-correlation between 𝒞 and Y are significantly 

different. The cross-correlation between a set of random variables 𝒮 =

{𝑉1, … , 𝑉𝑛} and a random variable Y is given by 

𝑟𝒮,𝑌 = 𝑑𝑇(𝑅𝒮)+𝑑                                                                                   (7) 

Where: 
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𝑑(𝑖) =
𝐸((𝑉𝑖 − 𝑉�̅�)(𝑌 − �̅�))

√𝐸((𝑉𝑖 − 𝑉�̅�)
2)𝐸((𝑌 − �̅�)2)

 

𝑅𝒮(𝑖, 𝑗) =
𝐸 ((𝑉𝑖 − 𝑉�̅�)(𝑉𝑗 − 𝑉�̅�))

√𝐸((𝑉𝑖 − 𝑉�̅�)
2)𝐸 ((𝑉𝑗 − 𝑉�̅�)

2
)

 

 In terms of (7), 𝑥𝜖𝒮𝒞 if and only if 

         |𝑟𝒞∖{𝑥},𝑌 − 𝑟𝒞,𝑌| > 𝜀                                                                     (8) 

Note that the cluster 𝒞 includes the variables strongly correlated to Y 

and its corresponding general error with respect to (6) is minimal on the cluster 

sets. 

 

4. Machine learning-based models for data forecasting 

 

4.1. The general forecasting model 

In order to develop the general forecasting model, we used 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

to establish whether the time series are stationary or not.  

In case ACF decays very slowly, the considered time series are non-

stationary. In the following we consider the general model, when the time series 

are non-stationary. Let d be such that, for all considered variables, PACF 

function drops immediately after the dth lag. This means that the delay should 

be set to d.  

We considered the general forecasting model, where both OMV stock 

data and sets of variables obtained from technical and fundamental analysis are 

taking into account. The model is described as follows: 

 

Ŷ(t+p) = f (𝑌𝑡
(𝑑)

, 𝑋𝑡
(𝑑)

)                                                                                  (9) 

     

𝑌𝑡
(𝑑)

= {Yt, Yt−1, Yt−2, … , Yt−d+1}                                                                (10) 

where: 

𝑋𝑡
(𝑑)

= {Xt, Xt−1, Xt−2, … , Xt−d+1}                                                              (11) 

Xt = (Xt(1), Xt(2), … , Xt(𝑛))
𝑇

                                                                    (12) 

and Xt(1), Xt(2), … , Xt(𝑛) are the selected components of XTt.  

 

4.2. NARX neural networks 

Artificial neural networks (ANNs) are non-parametric methods which 

are able to approximate a large class of functions with a high degree of 

accuracy. An important class of dynamic recurrent neural networks is the 

Nonlinear Autoregressive with eXogenous input (NARX) model.  
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The NARX network is a dynamical neural architecture used for input-

output modeling of nonlinear dynamical systems. When applied to time series 

forecasting, the NARX network is designed as a feedforward Time Delay 

Neural Network and consists of a Multilayer Perceptron which takes as input a 

window of past input and output values and computes a prediction of the 

current output value. [16] 

NARX networks are well suited for modelling non-linear time series as 

well as for multi-step ahead prediction. One of the most commonly used NARX 

architecture consists of an input layer,𝐹𝑋, a hidden layer, 𝐹𝐻 and an output 

layer, 𝐹𝑌, each of which is connected to the other. The architecture of the three-

layered NARX model is illustrated in Figure 1. 

 

 
Figure 1. NARX network architecture 

 

In the NARX model, the previous values of an independent input signal 

are used to predict the future value of output signal which can be 

mathematically represented as 

𝑦(𝑛 + 1) = 𝑓[𝑦(𝑛), 𝑦(𝑛 − 1), … , 𝑦(𝑛 − 𝑡𝑦 + 1), 𝑢(𝑛 − 𝑘),

𝑢(𝑛 − 𝑘 + 1), … , 𝑢(𝑛 − 𝑡𝑢 − 𝑘 + 1)]                             (13) 

where𝑦(𝑛 + 1) is the next value of the dependent output variable 𝑦, and 𝑢 is 

externally determined vector of variables that influence y at time n. The 

functionf is the mapping performed by a Multilayer Perceptron, that estimates 

the next value of {𝑦(𝑡)}, while  𝑡𝑢 ≥ 1, 𝑡𝑦 ≥ 1, 𝑡𝑢 ≤ 𝑡𝑦 are the input-memory 

and output-memory orders, respectively, and parameter k  is a delay term, 

where 𝑘 ≥ 0. 

 By assuming that k=0, we get the standard version of NARX model  

𝑦(𝑛 + 1) = 𝑓[𝑦(𝑛), 𝑦(𝑛 − 1), … , 𝑦(𝑛 − 𝑡𝑦 + 1), 𝑢(𝑛), … , 𝑢(𝑛 − 𝑡𝑢 + 1)](14) 

The terms 𝑢(𝑛), 𝑢(𝑛 − 1), … , 𝑢(𝑛 − 𝑡𝑢 − 1) are the exogenous inputs produced 

with an input delay line with memory of order 𝑡𝑢 and 𝑦(𝑛), 𝑦(𝑛 − 1), … ,

𝑦(𝑛 − 𝑡𝑦 + 1) are the endogenous inputs produced with a delay memory line of 

order 𝑡𝑦.  

The training phase in NARX model can be carried out either in series-

parallel mode or in parallel mode.  
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In series-parallel mode, the output’s regressor consists only of the 

actual values of the system’s output and can be computed by: 

�̂�𝑆𝑃(𝑛 + 1) = 𝑓[𝑦(𝑛), … , 𝑦(𝑛 − 𝑡𝑦 + 1); 𝑢(𝑛), … , 𝑢(𝑛 − 𝑡𝑢 + 1)]          (15) 

In parallel mode, estimated outputs are fed back and included in the 

output’s regressor. 

�̂�𝑃(𝑛 + 1) = 𝑓[�̂�(𝑛), … , �̂�(𝑛 − 𝑡𝑦 + 1); 𝑢(𝑛), … , 𝑢(𝑛 − 𝑡𝑢 + 1)           ](16) 

 

The three-layered NARX network we used in forecasting model (9) for 

𝑝 = 1 is defined in terms of (15), where 𝑑 = 𝑡𝑦 = 𝑡𝑢. 

The size of the hidden layer of NARX can be computed in many ways, 

some of the most frequently expressions being [17]  

|𝐹𝐻| = 2 [√(|𝐹𝑌| + 2)|𝐹𝑋|]                                                                                 (17) 

where|𝐹𝑋| and |𝐹𝑌| are the sizes of the input layer and the output layer 

respectively. 

The activation functions of the neurons belonging to the hidden and 

output layers can be selected from a very large family. In our work, we 

considered the logistic type to model the activation functions of the neurons 

belonging to the hidden layers, and the unit functions to model the outputs of 

the neurons belonging to the output layers. 

The training of the NARX architecture is of supervised type using a 

gradient descent approach. In our work the local memories of 𝐹𝐻 and 𝐹𝑌 are 

determined using theLevenberg-Marquardt (LM) variant of the backpropagation 

learning algorithm. The LM algorithm is one of the most widely used and 

efficient optimization algorithm which provides a numerical solution of 

nonlinear least squares minimization problem. It is based on Newton 

optimization method, where the iterative process is of hill-climbing type and the 

computation of the updating values is computed based on Singular Value 

Decomposition technique. [18]   

 

4.3. Support Vector Regression 

Support Vector Machines (SVMs) are a relatively new supervised 

learning techniques based on the structured risk minimization (SRM) principle 

[19,20]. In contrast with neural networks, SVMs seek to minimize an upper 

bound of the generalization error instead of minimizing the observed training 

error.  

Let 𝐺 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑙} ⊂ 𝒮 × ℝbe a given training data, where 

𝒮 denotes the space of the input patterns. In the following we consider 𝒮 ⊂ ℝ𝑛. 

The objective of the support vector regression (SVR) is to find a function f that, 

on one hand, has at most 𝜀  deviation from the target 𝑦𝑖 and, on the other hand,  

f is as flat as possible.  

In case of linear functions, f is given by [20] 
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𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏 = 𝑤𝑇𝑥 + 𝑏                                  (18) 

where,𝑤 ∈ 𝑋 is a weight vector, 𝑏 ∈ ℝ is a bias. In this case flatness means 

small values of the Euclidian norm of w, ‖𝑤‖2. Consequently, the problem can 

be formulated as a convex optimization problem, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
‖𝑤‖2 

        (19) 

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜 {
𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏 ≤ 𝜀

𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀
 

 

If there exists f such that |𝑓(𝑥𝑖) − 𝑦𝑖| ≤ 𝜀 for all (𝑥𝑖, 𝑦𝑖) ∈ 𝐺, the 

convex optimization problem (19) is feasible. Otherwise, slack variables 𝜉𝑖 , 𝜉𝑖
∗ 

should be considered to deal with unfeasible constraints of the optimization 

problem (19). Hence we obtain the following optimization problem [20], 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑙

𝑖=1

 

        (20) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜 {

𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖

𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0

 

 

where 𝐶 > 0 is a regularization constant expressing the trade-off between 

flatness of f and the amount of deviation larger than  that is tolerated.  

 

In order to solve the optimization problem (20), one considers its 

corresponding dual problem, using the standard Lagrange multipliers method. 

Let  L be the Lagrange function 

 

𝐿 =
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗) − ∑ 𝛼𝑖(𝜀 + 𝜉𝑖 − 𝑦𝑖 + 𝑤𝑇𝑥𝑖 + 𝑏)

𝑙

𝑖=1

𝑙

𝑖=1

 

− ∑ 𝛼𝑖
∗(𝜀 + 𝜉𝑖

∗ + 𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏) − ∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗)

𝑙

𝑖=1

𝑙

𝑖=1

                            (21) 

 

where 𝛼𝑖, 𝛼𝑖
∗, 𝜂𝑖, 𝜂𝑖

∗ ≥ 0 are the dual variables. Using the saddle point condition, 

if (𝑤, 𝑏) is a solution of (20) then   

∂𝑏𝐿 = ∑(𝛼𝑖
∗ − 𝛼𝑖)

𝑙

𝑖=1

= 0 
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∂𝑤𝐿 = 𝑤 − ∑(𝛼𝑖 − 𝛼𝑖
∗)𝑥𝑖

𝑙

𝑖=1

=  0                                                        (22) 

 ∂
𝜉𝑖

(∗)𝐿 = 𝐶 − 𝛼𝑖
(∗)

− 𝜂𝑖
(∗)

= 0 

and the dual optimization problem corresponding to (20) is given by 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 −
1

2
∑ (𝑎𝑖 − 𝛼𝑖

∗)(𝑎𝑗 − 𝛼𝑗
∗)𝑥𝑖

𝑇𝑥𝑗

𝑙

𝑖,𝑗=1

− 𝜀 ∑(𝑎𝑖 + 𝛼𝑖
∗) + ∑ 𝑦𝑖(𝑎𝑖 − 𝛼𝑖

∗)

𝑙

𝑖=1

𝑙

𝑖=1

 

 

        (23) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜 {
∑(𝑎𝑖 − 𝛼𝑖

∗) = 0

𝑙

𝑖=1

𝑎𝑖 , 𝛼𝑖
∗ ∈ [0, 𝐶]

 

 

Obviously, from (22) we get 

 

𝑤 = ∑(𝑎𝑖 − 𝛼𝑖
∗)𝑥𝑖

𝑙

𝑖=1

                                                                                         (24) 

and consequently, 

𝑓(𝑥) = (∑(𝑎𝑖 − 𝛼𝑖
∗)𝑥𝑖

𝑙

𝑖=1

)

𝑇

𝑥 + 𝑏 = ∑(𝑎𝑖 − 𝛼𝑖
∗)𝑥𝑖

𝑇𝑥

𝑙

𝑖=1

+ 𝑏                       (25) 

The expression of b is given by [19] 

 

𝑏 = 𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝜀for 𝑎𝑖 ∈ [0, 𝐶] 
                                         (26) 

𝑏 = 𝑦𝑖 − 𝑤𝑇𝑥𝑖 +  𝜀for 𝛼𝑖
∗ ∈ [0, 𝐶] 

 

In the following we consider the general case, when the SV algorithm is 

nonlinear. The non-linear transform is a map 𝑔: ℝ𝑛 → ℱ, the image of 𝒮 in the 

space ℱ being given by 𝒮ℊ = {𝑔(𝑥𝑖), 𝑥𝑖 ∈ 𝒮, 𝑖 = 1, … , 𝑙}. For each 𝑖 = 1, … , 𝑙, 

𝑔(𝑥𝑖) is the new representation of 𝑥𝑖 in the considered space ℱ. The transform 

g is called a feature extractor, and ℱ is the feature space.  

The main problem in designing the feature extractor g is to select a 

particular functional expression of g, such that, on one hand, the results of 
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forecasting process are accurate enough, and on the other hand the problem of 

computing the parameter(𝑤, 𝑏) is tractable. The “kernel trick” provides a 

solution to these problems [20]. It consists in selecting a function K that 

“covers” the explicit functional expression of g, therefore the evaluation of the 

regression function expression 𝑓(𝑥) = 𝑤𝑇𝑔(𝑥) + 𝑏 is performed exclusively in 

terms of K. The main result in kernel-based approaches is the celebrated Mercer 

theorem. According to these results, if  𝐾: ℝ𝑛 × ℝ𝑛 → [0,∞)is a continuous 

symmetric function, the existence of a function g such that for any 𝑥, 𝑥 ′ ∈

ℝ𝑛, 𝐾(𝑥, 𝑥 ′) = 𝑔(𝑥)𝑇𝑔(𝑥′)holds, is guaranteed in case K satisfies a set of quite 

general conditions [21].  

Using the “kernel trick”, the non-linear Support Vector algorithm is 

expressed in terms of the following optimization problem 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 −
1

2
∑ (𝑎𝑖 − 𝛼𝑖

∗)(𝑎𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖𝑥𝑗) −

𝑙

𝑖,𝑗=1

𝜀 ∑(𝑎𝑖 + 𝛼𝑖
∗)

𝑙

𝑖=1

+ ∑ 𝑦𝑖(𝑎𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

 

        (27) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜 {
∑(𝑎𝑖 − 𝛼𝑖

∗) = 0

𝑙

𝑖=1

𝑎𝑖 , 𝛼𝑖
∗ ∈ [0, 𝐶]

 

Similarly, we get 

 

𝑤 = ∑(𝑎𝑖 − 𝛼𝑖
∗)𝑔(𝑥𝑖)

𝑙

𝑖=1

                                                                                  (28) 

and therefore 

𝑓(𝑥) = ∑(𝑎𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖

𝑙

𝑖=1

𝑥) + 𝑏                                                                (29) 

 

A series of particular expressions of kernels satisfying the Mercer’s 

conditions have been extensively used in the published literature [19]. In our 

tests we use the Gauss Radial Basis Function (GRBF), 𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝛾‖𝑥 −
𝑥′‖2), 𝛾 > 0 because of its proved efficiency in feature extraction process. 

 

5. Case study of OMV PETROM stock closing price. Experimental analysis  

In our test, the prediction performance is evaluated in terms of RMSE 

measure.  

In case of the time series described in §2.2, ACF decays very slowly, 

therefore the considered time series are non-stationary. We analyzed the delay 
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considered in order to establish a forecasting model. Using the correlogram-

based analysis, we obtained that for all considered variables, PACF function 

drops immediately after the 2nd lag. This means that the delay for all variables 

should be set to 2 (𝑑 = 2).  

Step 1. First, we analyzed the most commonly used model, which 

considered only one time series, namely Yt. Since 𝑑 = 2, the following relation 

describes the forecasting model  

 Ŷt+1 = 𝑓1(𝑌𝑡, 𝑌𝑡−1)                                                                                   (30) 

We used the SVR and ANN methods to determine the function 𝑓1 in (30). We 

evaluated the forecasting capacity of (30) by splitting the available data into 

train data (70% of all data) and test data (30% of the all data, considered as 

new, unseen yet samples) and computing the RMSE between the real data and 

the forecasted ones. The best result in terms of RMSE when new data were 

predicted was obtained when SVR method was used. 

The predicted closing price values versus the real ones are presented in 

Figure 2. 

 
Figure 2. The predicted closing price values versus the real ones. 

The normalized case RMSE=0.025514 

 

In case of un-normalized closing price, the obtained RMSE is 

0.010511.  

 

Step 2. In the following, we consider the model (9), where the 

maximum value of n is 39 and  p=1. 

   Ŷ(t+1) = f (𝑌𝑡
(2)

, 𝑋𝑡
(2)

) 

𝑌𝑡
(2)

= {Yt, Yt−1}, 𝑋𝑡
(2)

= {Xt, Xt−1}                                                              (31) 

Xt = (Xt(1), Xt(2), … , Xt(𝑛))
𝑇
 

and  Xt(1), Xt(2), … , Xt(𝑛) are the selected components of XTt.  
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Step 2.1 Variable selection 

The function 𝑔 in (30) was computed based on SV regression. Note that 

the cross correlation between closing price and each component of XT is 

presented in Table 1. 

 

V1. In case of using variant 1 for variable selection, taking into account 

the values of the cross-correlation coefficients in Table 1, the tests were 

conducted in case 𝑇𝑟 ∈ 𝑇𝑟𝑆 = {0.6,0.8,0.85,0.9,0.95}. 

Note that, if we select all available variables as key variables, the 

generalized error of (4) is RMSE:0.07249.  

The cross-correlation threshold value 𝑇𝑟 ∈ 𝑇𝑟𝑆 for which the general 

forecasting error of the model (4) is minimized is 0.9 (the time series should be 

strongly correlated to the closing price time series), 𝑛 = 6 and RMSE of (4) 

when new samples are forecasted is 0.0229912. The results are presented in 

Figure 3. 

 
Figure 3. The performances of (4) for Tr=0.9. RMSE=0.0229912 

 

 

V2. If we apply the variable selection process described in Variant2, we 

obtained the following results. In case of using4-means algorithm, the 

computed cluster 𝒞 included 10 variables (1,2,3,5-10,37 in Table 1) 

The error of (4) when new samples are forecasted is 0.051403.  

In order to select the most informative variables from the cluster 𝒞, we 

used 𝜀 = 1.5 ∗ 10−6. The computed subset  𝒮𝒞consists of 4 variables (high 

price, low price, KAMA and MA). The error of (4) when new samples are 

forecasted is 020422. The results are presented in Figure 4. 
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Figure 4. The performances of (4) when we used variant 2 of proposed 

selection process, k=4 and = 𝟏. 𝟓 ∗ 𝟏𝟎−𝟔 . RMSE=0.020422 

 

 Step 3. NARX-based forecasting of model (31) 

We apply a neural network-based method for closing price forecasting 

in terms of the model (31). We implemented the NARX model using the 

following computation scheme: 

1. The training step. Train the network using first 50% examples; the process is 

over when the neural network is capable to forecast the trained data such that 

𝑅𝑀𝑆𝐸 < 𝜀′. In our tests we considered 𝜀 ′ = 0.04 

2. The validation step uses the next 20% examples. If the network forecasts 

sufficiently well the examples belonging to the validation set, i.e. 𝑅𝑀𝑆𝐸 < 𝜀", 

then GOTO3. Otherwise GOTO 1. The parameter 𝜀" is set in the interval 
[0.04,0.05]. 
3. The resulted network is tested on new data (the remaining 30% data). 

In case of using variable selection method V1, the error of (31) 

measured in terms of RMSE when new samples are forecasted is around 

0.0300. The results are shown in figure 5. In case of using variable selection 

process based on the proposed selection method V2, the RMSE error of (31) 

when new samples are forecasted is around 0.0275. The graphic representation 

of forecasted values versus the true ones is presented in figure 6. 

Step 4. SVR-based forecasting using model (31) 

We apply a SVR-based method for closing price forecasting in terms of 

the model (31). We evaluated the forecasting capacity of (31) by splitting the 

available data into train data (70% of all data) and test data (30% of the all data, 

considered as new, unseen yet samples) and computing the RMSE between the 

real data and the forecasted ones. 
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Figure 5.The performances of (31) when we used NARX-based forecasting 

method and variant 1 of proposed selection process. RMSE=0.03  

 

 
 

Figure 6.The performances of (31) when we used NARX-based forecasting 

method and variant 2 of proposed selection process. RMSE=0.0275  

 

If we apply the selection method V1, the error of prediction model (31) 

when new samples are forecasted is 0.0206. The corresponding results are 

displayed in Figure 7. 

If we use the variable selection method V2, the error of (31) when new 

samples are forecasted is 0.0200. The obtained results are presented in figure 

10.In case of un-normalized closing price (real values), we obtained 

RMSE=0.0079319. 
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Figure 7.The performances of (31) when we used SVR-based forecasting 

method and variant 1 of proposed selection process. RMSE=0.0206  

 

 

 
Figure 8.The performances of (31) when we used SVR-based forecasting 

method and variant 2 of proposed selection process. RMSE=0.0200  

 

6. Experimentally derived conclusion and suggestions for further work 

The research work reported in this paper aims the development of a 

hybrid approach which combines the use of the variables derived from technical 

and fundamental analysis of stock market indicators in order to improve 

prediction results of the proposed approaches. Two novel variable selection 

methods are used to optimize the performance of prediction models. In order to 

identify the most informative time series to predict a stock price, both methods 

are essentially based on the general forecasting error minimization when a 

certain stock price, Y, is expressed exclusively in terms of other indicators 
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(variables and/or stock prices). Also, the former proposed method includes 

cross-correlation analysis and the second one is derived based on cluster 

analysis and cross-correlation coefficients. After the variable selection is over, 

the forecasting of Y is performed in terms of the historical values of Y and 

selected variables respectively. 

First, we analyze the performances of the complex forecasting model 

(31) against the forecasting model (30). The last model is obviously the 

simplest one and yet very useful in many real world applications. In our case 

the former model proved better results.  

In our work, the most suited forecasting model is given by (31) and the 

best prediction method resides in using the novel selection method V2 and   

using a SVR model for learning the regression function of (31)  

Note that in model (30) the generalized error (RMSE) is 0.010511, 

while the performance of the proposed forecasting model (31) given in terms of 

RMSE is far better, the RMSE value being 0.0079319. 

The long series of tests proved good results of the above described 

methodology entailing the hope that further and possibly more sophisticated 

extensions can be expected to improve it. Among several possible extensions, 

some work is still in progress concerning the use of different output functions 

for the hidden and output neurons, and the use of more hidden layers in the 

NARX neural architectures. Also, some other selection techniques combined to 

new techniques for feature extraction as well as the use of fuzzy SVR based 

learning schemes to forecast the data are expected to allow the removal of a 

larger amount of noise. 

 

Table 1.Cross correlation between closing price and other variables 

 
Stock Based Analysis Technical Analysis 

Indicator Coefficient Indicator Coefficient Indicator Coefficient 

1. Opening 

2. High 

3. Low 

4. Volume 

0.99821946 

0.999401 

0.99896 

-0.25555 

 

5. BB 

6. EMA 

7. KAMA 

8. MA 

9. WMA 

10. TRIMA 

11. ATR 

12. ADX 

13. APO 

14. AROON 

15. BOP 

16. CCI 

17. CMO 

18. DX 

19. MACD 

0.5676 

0.9093 

0.9213 

0.8694 

0.9306 

0.8546 

-0.0267 

-0.2409 

0.4750 

-0.2309 

0.1138 

0.2713 

0.5018 

-0.1317 

0.5802 

20. MFI 

21. Momentum 

22. PPO 

23. ROC 

24. RSI 

25. %K 

26. %D 

27. Ultimate Osc 

28.Williams %R 

29. Minus DI 

30. Plus DI 

31. Minus DM 

32. Plus DM 

33. ChaikinOsc 

34. OBV 

0.6673 

0.3680 

0.4010 

-0.0349 

0.5018 

-0.0863 

-0.0803 

0.0662 

0.2169 

-0.577 

0.3653 

-0.4402 

0.4482 

-0.0283 

0.5896 

Fundamental Analysis 

Indicator Coefficient 

35. BET Index 

36. ROTX Index 

37. Crude Oil Price 

38.DowJones Index 

39. USD-RON 

0.882602 

0.8423804 

0.880853 

0.854413 

-0.28212 
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